Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of thickness variation in high-efficiency InGaN/GaN light-emitting diodes

Identifieur interne : 00DF98 ( Main/Repository ); précédent : 00DF97; suivant : 00DF99

Effect of thickness variation in high-efficiency InGaN/GaN light-emitting diodes

Auteurs : RBID : Pascal:02-0402640

Descripteurs français

English descriptors

Abstract

InxGa(1-x)N/GaN multiquantum-well light-emitting diodes (LEDs) having periodic thickness variations (TVs) in InxGa(1-x)N active layers exhibit substantially higher optical efficiency than LEDs with uniform InxGa(1-x)N layers. In these nanostructured LEDs, the thickness variation of the active layers is found to be more important than the In composition fluctuation in quantum confinement of excitons (carriers). Detailed scanning transmission electron microscopy-atomic number Z contrast analysis, where image contrast is proportional to Z2 (Z being the atomic number), was carried out to investigate the variation in thickness as well as the spatial distribution of In. In the nanostructured LEDs, there are short-range thickness variations (SR-TVs) (3-4 nm) and long-range thickness variations (LR-TVs) (50-100 nm) in InxGa(1-x)N layers. It is envisaged that LR-TV is key to quantum confinement of the carriers and enhancement of the optical efficiency. We propose that the LR-TV is caused by two-dimensional strain in the InxGa(1-x)N layer below its critical thickness. The SR-TV may be caused by In composition fluctuation. © 2002 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:02-0402640

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effect of thickness variation in high-efficiency InGaN/GaN light-emitting diodes</title>
<author>
<name sortKey="Narayan, J" uniqKey="Narayan J">J. Narayan</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7916</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Materials Science and Engineering, North Carolina State University, Raleigh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7916</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Materials Science and Engineering, North Carolina State University, Raleigh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ye, Jinlin" uniqKey="Ye J">Jinlin Ye</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Kopin Corporation, 695 Myles Standish Boulevard, Taunton, Massachusetts 02780</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Kopin Corporation, 695 Myles Standish Boulevard, Taunton</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hon, Schang Jing" uniqKey="Hon S">Schang-Jing Hon</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Kopin Corporation, 695 Myles Standish Boulevard, Taunton, Massachusetts 02780</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Kopin Corporation, 695 Myles Standish Boulevard, Taunton</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Fox, Kenneth" uniqKey="Fox K">Kenneth Fox</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Kopin Corporation, 695 Myles Standish Boulevard, Taunton, Massachusetts 02780</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Kopin Corporation, 695 Myles Standish Boulevard, Taunton</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jyh Chia" uniqKey="Chen J">Jyh Chia Chen</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Kopin Corporation, 695 Myles Standish Boulevard, Taunton, Massachusetts 02780</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Kopin Corporation, 695 Myles Standish Boulevard, Taunton</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Choi, H K" uniqKey="Choi H">H. K. Choi</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Kopin Corporation, 695 Myles Standish Boulevard, Taunton, Massachusetts 02780</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Kopin Corporation, 695 Myles Standish Boulevard, Taunton</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Fan, John C C" uniqKey="Fan J">John C. C. Fan</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Kopin Corporation, 695 Myles Standish Boulevard, Taunton, Massachusetts 02780</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Kopin Corporation, 695 Myles Standish Boulevard, Taunton</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">02-0402640</idno>
<date when="2002-07-29">2002-07-29</date>
<idno type="stanalyst">PASCAL 02-0402640 AIP</idno>
<idno type="RBID">Pascal:02-0402640</idno>
<idno type="wicri:Area/Main/Corpus">00ED11</idno>
<idno type="wicri:Area/Main/Repository">00DF98</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0003-6951</idno>
<title level="j" type="abbreviated">Appl. phys. lett.</title>
<title level="j" type="main">Applied physics letters</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Excitons</term>
<term>Experimental study</term>
<term>Gallium compounds</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Light emitting diodes</term>
<term>Nanostructured materials</term>
<term>Scanning transmission electron microscopy</term>
<term>Semiconductor quantum wells</term>
<term>Semiconductor thin films</term>
<term>Wide band gap semiconductors</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>8560J</term>
<term>8535B</term>
<term>7867D</term>
<term>6865F</term>
<term>8105E</term>
<term>7321F</term>
<term>8107S</term>
<term>6837L</term>
<term>7320M</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Gallium composé</term>
<term>Semiconducteur III-V</term>
<term>Semiconducteur bande interdite large</term>
<term>Puits quantique semiconducteur</term>
<term>Diode électroluminescente</term>
<term>Microscopie électronique balayage transmission</term>
<term>Exciton</term>
<term>Nanomatériau</term>
<term>Couche mince semiconductrice</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In
<sub>x</sub>
Ga
<sub>(1-x)</sub>
N/GaN multiquantum-well light-emitting diodes (LEDs) having periodic thickness variations (TVs) in In
<sub>x</sub>
Ga
<sub>(1-x)</sub>
N active layers exhibit substantially higher optical efficiency than LEDs with uniform In
<sub>x</sub>
Ga
<sub>(1-x)</sub>
N layers. In these nanostructured LEDs, the thickness variation of the active layers is found to be more important than the In composition fluctuation in quantum confinement of excitons (carriers). Detailed scanning transmission electron microscopy-atomic number Z contrast analysis, where image contrast is proportional to Z
<sup>2</sup>
(Z being the atomic number), was carried out to investigate the variation in thickness as well as the spatial distribution of In. In the nanostructured LEDs, there are short-range thickness variations (SR-TVs) (3-4 nm) and long-range thickness variations (LR-TVs) (50-100 nm) in In
<sub>x</sub>
Ga
<sub>(1-x)</sub>
N layers. It is envisaged that LR-TV is key to quantum confinement of the carriers and enhancement of the optical efficiency. We propose that the LR-TV is caused by two-dimensional strain in the In
<sub>x</sub>
Ga
<sub>(1-x)</sub>
N layer below its critical thickness. The SR-TV may be caused by In composition fluctuation. © 2002 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0003-6951</s0>
</fA01>
<fA02 i1="01">
<s0>APPLAB</s0>
</fA02>
<fA03 i2="1">
<s0>Appl. phys. lett.</s0>
</fA03>
<fA05>
<s2>81</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effect of thickness variation in high-efficiency InGaN/GaN light-emitting diodes</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>NARAYAN (J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WANG (H.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>YE (Jinlin)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HON (Schang-Jing)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FOX (Kenneth)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>CHEN (Jyh Chia)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>CHOI (H. K.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>FAN (John C. C.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7916</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Kopin Corporation, 695 Myles Standish Boulevard, Taunton, Massachusetts 02780</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>841-843</s1>
</fA20>
<fA21>
<s1>2002-07-29</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10020</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2002 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>02-0402640</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied physics letters</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In
<sub>x</sub>
Ga
<sub>(1-x)</sub>
N/GaN multiquantum-well light-emitting diodes (LEDs) having periodic thickness variations (TVs) in In
<sub>x</sub>
Ga
<sub>(1-x)</sub>
N active layers exhibit substantially higher optical efficiency than LEDs with uniform In
<sub>x</sub>
Ga
<sub>(1-x)</sub>
N layers. In these nanostructured LEDs, the thickness variation of the active layers is found to be more important than the In composition fluctuation in quantum confinement of excitons (carriers). Detailed scanning transmission electron microscopy-atomic number Z contrast analysis, where image contrast is proportional to Z
<sup>2</sup>
(Z being the atomic number), was carried out to investigate the variation in thickness as well as the spatial distribution of In. In the nanostructured LEDs, there are short-range thickness variations (SR-TVs) (3-4 nm) and long-range thickness variations (LR-TVs) (50-100 nm) in In
<sub>x</sub>
Ga
<sub>(1-x)</sub>
N layers. It is envisaged that LR-TV is key to quantum confinement of the carriers and enhancement of the optical efficiency. We propose that the LR-TV is caused by two-dimensional strain in the In
<sub>x</sub>
Ga
<sub>(1-x)</sub>
N layer below its critical thickness. The SR-TV may be caused by In composition fluctuation. © 2002 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H67D</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60H65</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B80A05H</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B70C21F</s0>
</fC02>
<fC02 i1="07" i2="3">
<s0>001B80A05Y</s0>
</fC02>
<fC02 i1="08" i2="3">
<s0>001B60A16B</s0>
</fC02>
<fC02 i1="09" i2="3">
<s0>001B70C20M</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>8560J</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>8535B</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7867D</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>6865F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>8105E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>7321F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>8107S</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>6837L</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>7320M</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Gallium composé</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Gallium compounds</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Semiconducteur bande interdite large</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Wide band gap semiconductors</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Puits quantique semiconducteur</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Semiconductor quantum wells</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Diode électroluminescente</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Light emitting diodes</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Microscopie électronique balayage transmission</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Scanning transmission electron microscopy</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Exciton</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Excitons</s0>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Nanomatériau</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Couche mince semiconductrice</s0>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Semiconductor thin films</s0>
</fC03>
<fN21>
<s1>224</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0230M000123</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00DF98 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00DF98 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:02-0402640
   |texte=   Effect of thickness variation in high-efficiency InGaN/GaN light-emitting diodes
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024